
#### Variable Radii Poisson-Disk Sampling

#### Scott A. Mitchell, Alexander Rand, Mohamed S. Ebeida, Chandrajit Bajaj

www.cs.sandia.gov/~samitch

(or Google Mitchell Sandia)

#### 24th Canadian Conference on Computational Geometry



8-10 August 2012

Session 4B Thursday Aug 9 11:30-11:50





#### Goal – convince you

- There is still interesting Computational Geometry work for generating separate-yet-dense point sets
  - Delaunay Refinement (DR) doesn't solve everything
- Poisson-disk output has some advantages
  - Graphics cares
  - Fracture mechanics cares
- Even though slower than deterministic DR
- Slightly different than sphere packings





#### **Outline**

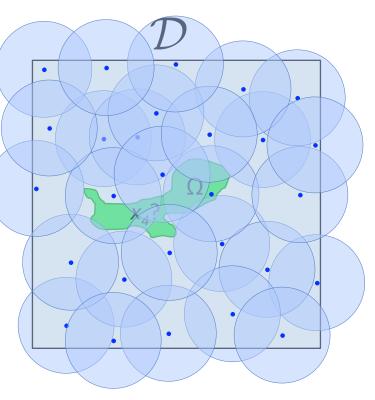
- Maximal Poisson-Disk Sampling (MPS) what is it, why do we care
  - Graphics apps
  - Simulations
- Our prior results for MPS points, Voronoi and Delaunay meshes
  - Sites may encroach on boundary, not dual of a body-fitted tetrahedralization
- Spatially varying radii
  - Lipschitz conditions
- Motivation: MPS spectrum vs. blue noise
- Two-radii MPS definition
  - Random refinements
- MPS output vs. Delaunay Refinement (DR)
  - PSA Spectrum
  - Angle spectra vs. DR, Edge length vs. DR



## **Maximal Poisson-Disk Sampling**

#### What is MPS?

- Dart-throwing
- Insert random points into a domain, build set X


With the "Poisson" process

Empty disk: 
$$\forall x_i, x_j \in X, x_i \neq x_j : ||x_i - x_j|| \geq r$$

Bias-free: 
$$\forall x_i \in X, \forall \Omega \subset \mathcal{D}_{i-1}$$
:

$$P(x_i \in \Omega) = \frac{\operatorname{Area}(\Omega)}{\operatorname{Area}(\mathcal{D}_{i-1})}$$

Maximal: 
$$\forall x \in \mathcal{D}, \exists x_i \in X : ||x - x_i|| < r$$

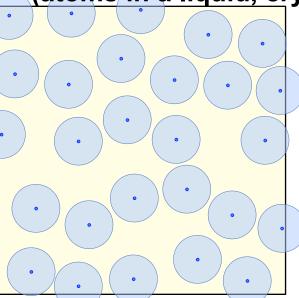






- Statistical processes
  - Hard-core Strauss disc processes
    - Non-overlap: inhibition distance r<sub>1</sub>
    - cover domain: disc radius r<sub>2</sub>
- Geostatistics focus is inverse problem
  - Given satellite pictures (non-maximal dist.)
    - How many trees are there?
    - How much lumber?
  - Trees in a forest
    - Points are trunksDisks are canopy or separation distance

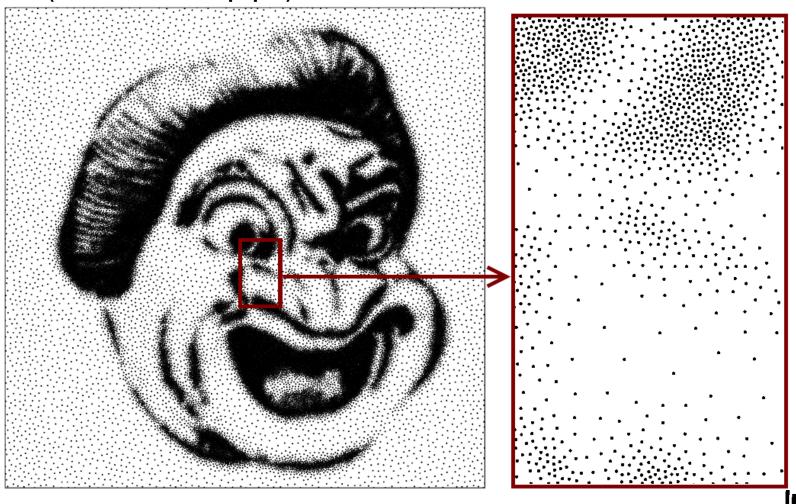









- Random sphere packing
  - r/2-disks non-overlap
  - MPS = random sequential adsorption


- (atoms in a liquid, crystal)





## Motivation from old-school Static Graphics

• Stippling: images from dots, as newsprint (results from this paper)





## Motivating from Modern Graphics: (Brush) Stroke-Based Rendering

- CG artistic effect to mimic physical media
- Images from Aaron Hertzmann, Stroke-Based Rendering



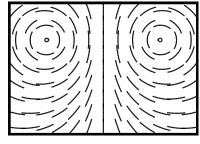


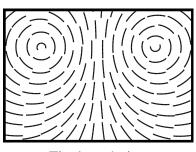


Source photo

Painted version

Final rendering


**Definition:** A **stroke** is a data structure that can be rendered in the image plane. A **stroke model** is a parametric description of strokes, so that different parameter settings produce different stroke positions and appearances.


For example, one form of stippling uses a very simple stroke model:





• • •



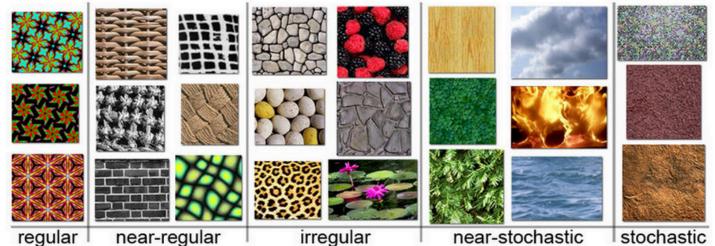


Stippling stroke model Individual strokes (stipples)

Vector field

Final rendering

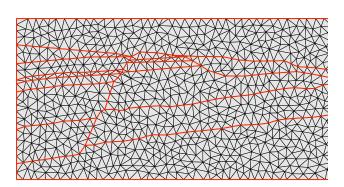



## Motivating from Modern Graphics: Texture Synthesis

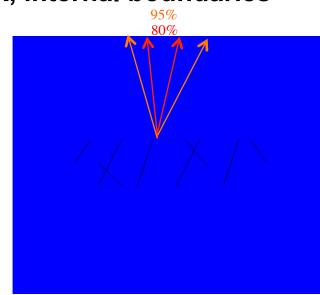
- Real-time environment exploration. Games! Movies!
- Algorithm to create output image from input sample
  - Arbitrary size
  - Similar to input
  - No visible seams, blocks
  - No visible, regular repeated patterns



Spaghetti Li Yi Wei SIGGRAPH 2011


#### examples from wikipedia:






## What is MPS good for? Sandia cares about Games and Movies? training...

- Physics simulations why SNL paid for year 1-2 ☺
  - Voronoi mesh, cell = points closest to a sample
  - Fractures occur on Voronoi cell boundaries
    - Mesh variation ⊂ material strength variation
    - CVT, regular lattices give unrealistic cracks
      - Unbiased sampling gives realistic cracks
  - Ensembles of simulations
  - Domains: non-convex, internal boundaries



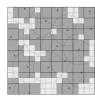
Seismic Simulations maximal helps  $\Delta$  quality



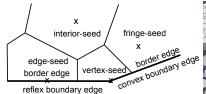
#### Fracture Simulations

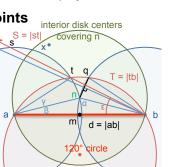
Courtesy of Joe Bishop (SNL)

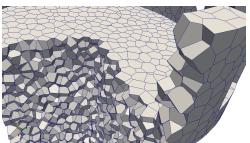





#### **Prior Results**


- Many fast Graphics algorithms that modified the process slightly, or the termination criteria
- First E( n log n) algorithm with provably correct output
  - Efficient Maximal Poisson-Disk Sampling,
     Ebeida, Patney, Mitchell, Davidson, Knupp, Owens,
     SIGGRAPH 2011





- Simpler, less memory, provably correct, faster in practice but no run-time proof
  - A Simple Algorithm for Maximal Poison-Disk Sampling in High Dimensions, Ebeida, Mitchell, Patney, Davidson, Owens Eurographics 2012



- Voronoi Meshes
  - Sites interior, close to domain boundary are OK, not the dual of a body-fitted Delaunay Mesh
  - Uniform Random Voronoi Meshes
     Ebeida, Mitchell
     IMR 2011
- Delaunay Meshes
  - Protect boundary with random balls
  - Efficient and Good Delaunay Meshes from Random Points
     Ebeida, Mitchell, Davidson, Patney, Knupp, Owens
     SIAM GD/SPM 2011

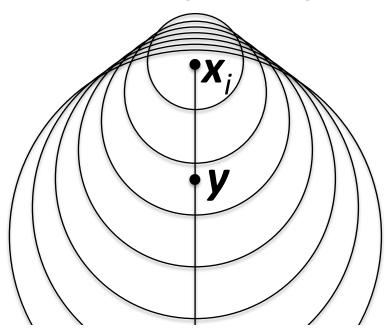


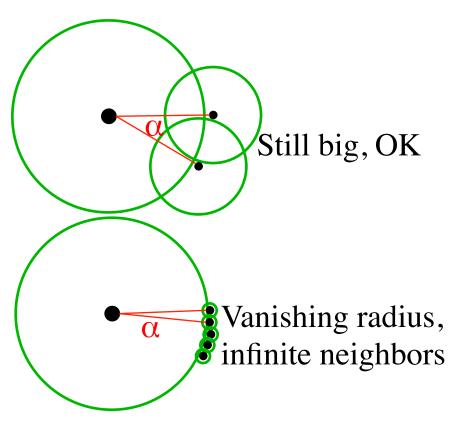









#### **First Contribution**


- Uniform, static literature pretty rigorous
  - Graphics papers with heuristics for sampling curved surfaces, non-uniformly
    - unknown or unstated Lipschitz criteria, neighbor datastructures that sometimes blow-up in practice
- Lipschitz conditions for spatially varying radii function
  - Reasons and proof techniques as in Delaunay Refinement



### How fast can radii vary?

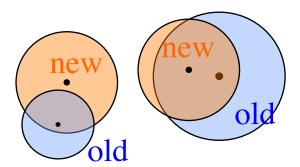
- If varies slowly
  - bounded # neighbors for disk conflict checks <-> bounded-angle DT
- If shrink too fast
  - Unbounded # neighbors
  - Infinite run-time
  - Zero angles in triangulation





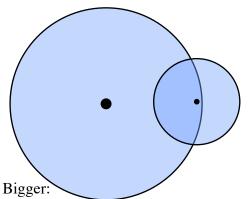


# Q. How fast can it vary? A. Depends how Conflict is defined.

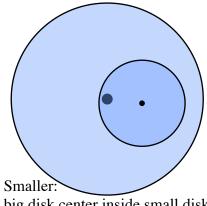

#### L is Lipschitz constant: f(x)-f(y) < L |x-y|

| Four common methods | Method             | Distance<br>Function                            | Order<br>Independent | Full     | Conflict<br>Free | $egin{aligned} & 	ext{Edge} \ & 	ext{Min} \end{aligned}$ | $\begin{array}{c} { m Edge} \\ { m Max} \end{array}$ | Sin Angle<br>Min | $\max_{I}$ |
|---------------------|--------------------|-------------------------------------------------|----------------------|----------|------------------|----------------------------------------------------------|------------------------------------------------------|------------------|------------|
|                     | Method             | F UHCUIOH                                       | тиаеренаен           | Coverage | rree             | IVIIII                                                   | wax                                                  | 1V1111           | <i>L</i>   |
|                     | Prior              | $r(\mathbf{x})$                                 | no                   | no       | no               | 1/(1 + L)                                                | 2/(1-2L)                                             | (1 - 2L)/2       | 1/2        |
|                     |                    | $r(\mathbf{y})$                                 | no                   | no       | no               | 1/(1+L)                                                  | 2/(1-L)                                              | (1 - L)/2        | 1          |
|                     | 🖰 Bigger           | $\max\left(r(\mathbf{x}), r(\mathbf{y})\right)$ | yes                  | no       | yes              | 1                                                        | 2/(1-2L)                                             | (1 - 2L)/2       | 1/2        |
|                     | . <b>≡</b> Smaller | $\min\left(r(\mathbf{x}), r(\mathbf{y})\right)$ | yes                  | yes      | no               | 1/(1 + L)                                                | 2/(1-L)                                              | (1 - L)/2        | 1          |

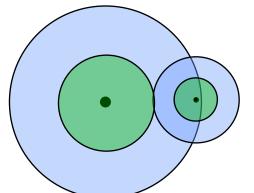



Prior:

new candidate disk center inside an old prior disk



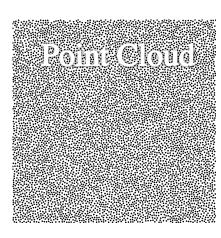

Current:


old prior disk center inside a new candidate disk

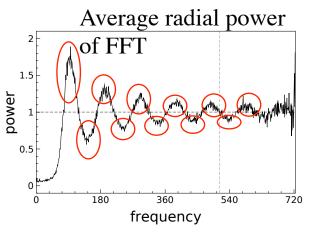


small disk center inside big disk center




big disk center inside small disk center




Bigger is stricter than Sphere packing:  $\frac{1}{2}$  radius disks overlap distance: sum(r(x),r(y))/2



### **Graphics Quality Criteria**





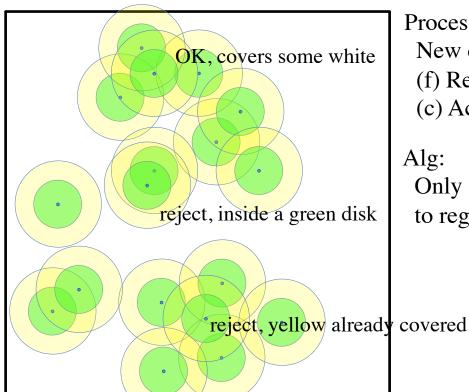


Point Set Analysis: http://code.google.com/p/psa/

OK, but what about these?

- Graphics papers say they like MPS because
  - Small low frequency component
  - No big spikes, especially spikes at high frequency
  - IMO want truncated white-noise

Unknown: analytic description of the limit distribution for MPS, Mean location and magnitude, std deviations of peaks? Anyone know some good spatial statisticians to work with?




## **Our Solution** (second contribution)

Disk coverage radius larger than free radius

$$R_c > R_f$$
 (yellow > green)

- New disks must cover some unique uncovered area
  - Else maximal (limit) distribution would be the same
  - Contrast to Hard-core Strauss disc process: coverage disks are observed, no effect on process

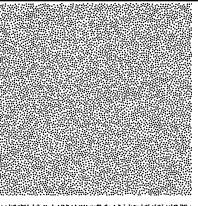


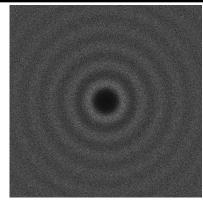
#### Process:

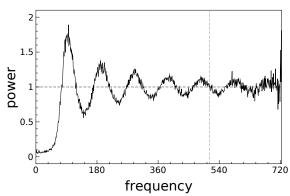
New candidate point uniform at random

- (f) Rejected if center inside a small green disk
- (c) Accepted if its yellow disk covers some white a

#### Alg:


Only generate points in an outer approximation to regions satisfying (c) and (f) in the first place.

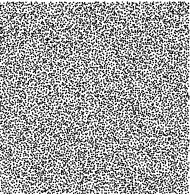


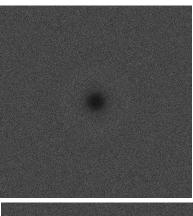



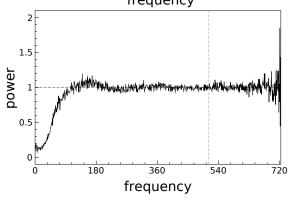

## Two-radii MPS output

• Classic MPS  $R_f = R_c$ 

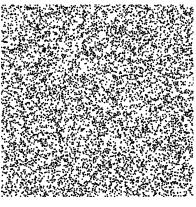




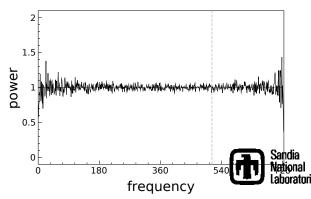





• Two-radii MPS 2 R<sub>f</sub> = R<sub>c</sub>

• R<sub>f</sub> = min center dist

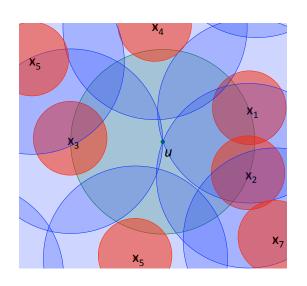

•  $R_c = max Vor dist$ 

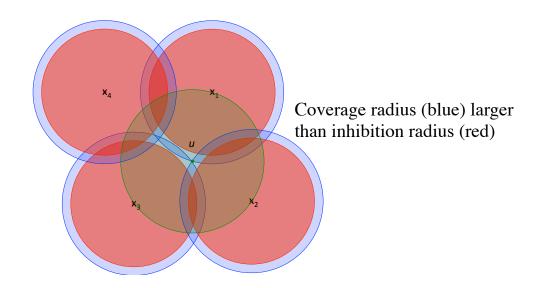







Uniform R = 0 non-maximal



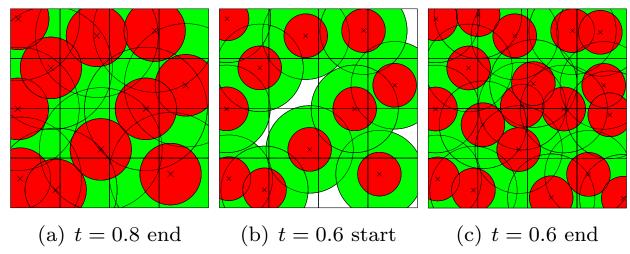



## Random refinements by shrinking radius

#### Continuously shrink radii





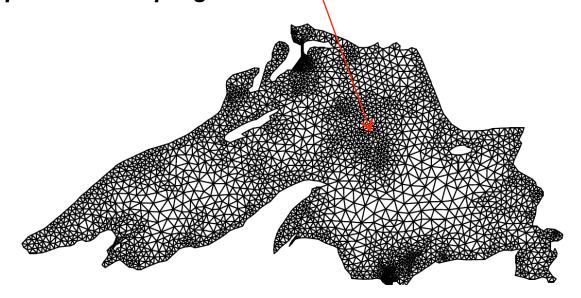

With one radius, get deterministic point placement, at Voronoi vertex, as classic Delaunay Refinement

With two radii, random placement, neighborhood of Voronoi vertex: inside green disk-at-u outside red



## Hierarchical by shrinking radius

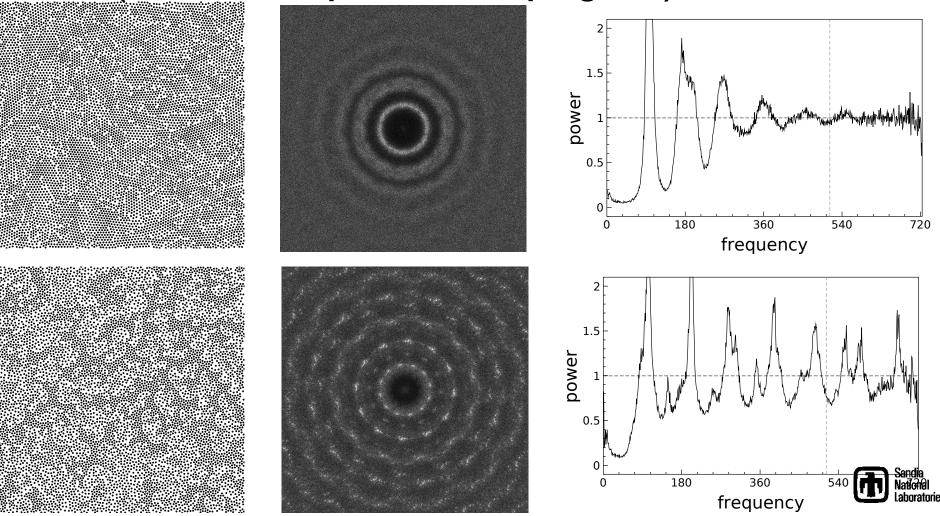
Discrete steps



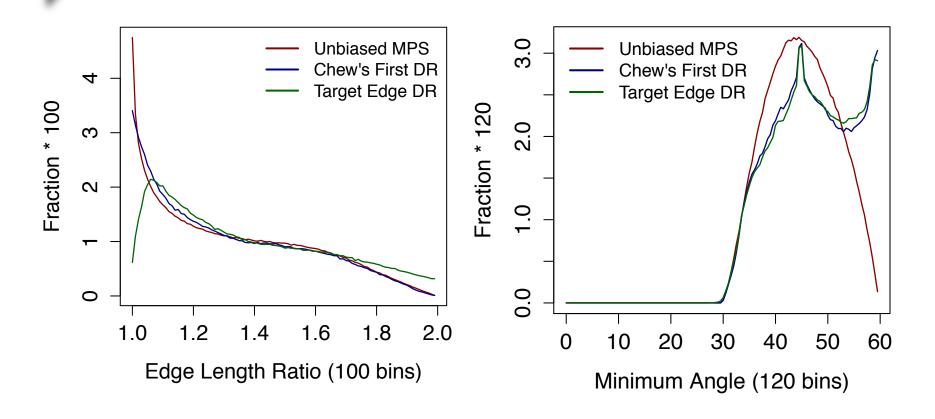

Simple since continue original algorithm No noticeable effect on output spectrum



## Contrast to Delaunay Refinement (DR)


- Direct sizing control
  - Disks centered at points, sized at that point
- Never  $O(n^2)$  no intermediate triangulation, generate points first
- No concentration at medial axis as DR
- Global Random placement
  - Slow vs. local deterministic DR
  - Spectrum results for DR depends on target, queue order Alex Rand experiments in progress








 Depends on target, queue order (Alex Rand experiments in progress)



### Uniform MPS vs. DR angles and edges



To do: study and contrast further





## Thanks!



